Statistical Programming Programming

DATA-51100: Statistical Programming Programming Assignment 2 – k-Means Clustering Introduction Clustering is a process of identifying groupings (i.e. clusters) within the data. For example, the figure below shows three clusters of two-dimensional data points (X’s): Clustering has many applications, including inferring population structures from genetic data, recognizing communities within social networks, or segmenting of customers for market research. One of the most popular algorithms for performing clustering is the k-means method. The algorithm depends on the notion of distance between two points. For points with only one dimension (just single values), we can define the distance between two points and as ( , ) = | − | The k-means algorithm will work by placing points into clusters and computing their centroids, which is defined as the average of the data points in the cluster. Specifically, the algorithm works as follows: 1. Pick k, the number of clusters. 2. Initialize clusters by picking one point (centroid) per cluster. For this assignment, you can pick the first k points as initial centroids for each corresponding cluster. 3. For each point, place it in the cluster whose current centroid it is nearest. 4. After all points are assigned, update the locations of centroids of the k clusters 5. Reassign all points to their closest centroid. This sometimes moves points between clusters. 6. Repeat 4,5 until convergence. Convergence occurs when points don’t move between clusters and centroids stabilize. Requirements You are to create a program using Python that does the following: 1. Asks the user for the number of clusters. This is the parameter k that will be used for k-means. 2. Reads the input file (prog2-input-data.txt) and stores the points into a list 3. Applies the k-means algorithm to find the cluster for each point. 4. Displays the points that each cluster contains after each iteration of the algorithm 5. Writes the final cluster assignments to the screen and the output file (prog2-output-data.txt). YOU CANNOT USE ANY PYTHON PACKAGES FOR THIS PROGRAM (NUMPY, PANDAS, …) – NO IMPORT STATEMENTS. Additional Requirements 1. The name of your source code file should be kMeans.py. All your code should be within a single file. 2. Your code should follow good coding practices, including good use of whitespace and use of both inline and block comments. 3. You need to use meaningful identifier names that conform to standard naming conventions. 4. At the top of each file, you need to put in a block comment with the following information: your name, date, course name, semester, and assignment name. 5. The output of your program should exactly match the sample program output given at the end. That is, for same input, it should generate the same output. Note that I may use other test cases for grading your program and your code needs to work correctly in all cases. Data File Format Let N be the number of points and Pi to be the value of point i. The input file should be of the following format: P1 P2 … PN Example: 1.2 2.1 4.56 2.113 2.2 The name of the input file is always: prog2-input-data.txt What to Turn In You will turn in a screenshot of your output and a single kMeans.py file using BlackBoard. HINTS  Make use of list comprehensions for reading lines from a file and then converting the strings into a list of floats.  Use pwd() to check the directory where you should place your input file.  Use a dict data structures for storing centroids and clusters. The centroids dict will be a mapping from cluster number to centroids. The clusters dict will be a mapping from cluster number to a list of points in the cluster. Sample Program Output DATA-51100, [semester] [year] NAME: [put your name here] PROGRAMMING ASSIGNMENT

Place your order
(550 words)

Approximate price: $22

Calculate the price of your order

550 words
We'll send you the first draft for approval by September 11, 2018 at 10:52 AM
Total price:
$26
The price is based on these factors:
Academic level
Number of pages
Urgency
Basic features
  • Free title page and bibliography
  • Unlimited revisions
  • Plagiarism-free guarantee
  • Money-back guarantee
  • 24/7 support
On-demand options
  • Writer’s samples
  • Part-by-part delivery
  • Overnight delivery
  • Copies of used sources
  • Expert Proofreading
Paper format
  • 275 words per page
  • 12 pt Arial/Times New Roman
  • Double line spacing
  • Any citation style (APA, MLA, Chicago/Turabian, Harvard)

Our guarantees

Delivering a high-quality product at a reasonable price is not enough anymore.
That’s why we have developed 5 beneficial guarantees that will make your experience with our service enjoyable, easy, and safe.

Money-back guarantee

You have to be 100% sure of the quality of your product to give a money-back guarantee. This describes us perfectly. Make sure that this guarantee is totally transparent.

Read more

Zero-plagiarism guarantee

Each paper is composed from scratch, according to your instructions. It is then checked by our plagiarism-detection software. There is no gap where plagiarism could squeeze in.

Read more

Free-revision policy

Thanks to our free revisions, there is no way for you to be unsatisfied. We will work on your paper until you are completely happy with the result.

Read more

Privacy policy

Your email is safe, as we store it according to international data protection rules. Your bank details are secure, as we use only reliable payment systems.

Read more

Fair-cooperation guarantee

By sending us your money, you buy the service we provide. Check out our terms and conditions if you prefer business talks to be laid out in official language.

Read more
Open chat
1
You can contact our live agent via WhatsApp! Via + 1 3234125597

Feel free to ask questions, clarifications, or discounts available when placing an order.

Order your essay today and save 30% with the discount code GIFT